An incremental EM-based learning approach for on-line prediction of hospital resource utilization
نویسندگان
چکیده
OBJECTIVE Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batch-mode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. METHODS AND MATERIAL The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < or = 1 day (Prop(MAD < or = 1)). The significance of the comparison is assessed through a regression analysis. RESULTS The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < or = 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD < or = 1) with the incremental learning algorithm. CONCLUSIONS The incremental learning feature and the self-adaptive model-selection ability of the ME network enhance its effective adaptation to non-stationary LOS data. It is demonstrated that the incremental learning algorithm outperforms the batch-mode algorithm in the on-line prediction of LOS.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملe-learning Utilization Based on the Problem-Solving Approach
Introduction & Objective: Paying attention to the process and approaches to the problem solving from the view of the e-learning courses designers, will improve the aspects of development. The problem-based learning provides the discovery structure and helps the students to internalize their learning. Therefore, the purpose of this study is to investigate the factors that lead to more utili...
متن کاملAn Intelligent Algorithm for Optimization of Resource Allocation Problem by Considering Human Error in an Emergency Department
Human error is a significant and ever-growing problem in the healthcare sector. In this study, resource allocation problem is considered along with human errors to optimize utilization of resources in an emergency department. The algorithm is composed of simulation, artificial neural network (ANN), design of experiment (DOE) and fuzzy data envelopment analysis (FDEA). It is a multi-response opt...
متن کاملAn Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling
With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...
متن کاملCycle Time Optimization of Processes Using an Entropy-Based Learning for Task Allocation
Cycle time optimization could be one of the great challenges in business process management. Although there is much research on this subject, task similarities have been paid little attention. In this paper, a new approach is proposed to optimize cycle time by minimizing entropy of work lists in resource allocation while keeping workloads balanced. The idea of the entropy of work lists comes fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 36 3 شماره
صفحات -
تاریخ انتشار 2006